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ABSTRACT 

In an attempt to clarify the difficulties encountered in finding solutions of the ideal model of chromatography and to justify 
these solutions, the history of the theoretical work performed on this model is reviewed. The publications of Wilson, DeVault, 
Glueckauf, Helfferich, Klein, Rhee, Aris and Amundson are analyzed, the efforts and successes of these authors are discussed 
and the rationale for this endeavor is explained. 

In a special occasion [l], we were credited 
with the “. . . tremendous task of solving the 
ideal chromatography problem for a two-com- 
ponent competitive Langmuir equilibrium” [2]. 
This flattering statement requires further expla- 
nation. In an attempt to clarify this issue and put 
into perspective our own contribution, we review 
briefly the history of the ideal model of chroma- 
tography. 

This model assumes an ideal column, with no 
axial dispersion and an infinite rate of mass 
transfer, achieving constant and immediate 
equilibrium between the two phases of the sys- 
tem. The differential mass balance of chromatog- 
raphy for this model is simply written as 

aq $+F.,+U.g=O 
where q and C are the concentrations of the 
component in the stationary and mobile phases 
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at equilibrium [q = f(C), isotherm], respectively, 
t and x are time and length, respectively, F is the 
phase ratio [F = (1 - E)/E, E being the total 
porosity of the packing bed] and u is the mobile 
phase flow velocity. 

The practical importance of the ideal model 
stems from its ignorance of mass transfer resist- 
ance. Its solution explains to us exactly what it is 
that the thermodynamics of phase equilibrium is 
trying to accomplish in the column. If we under- 
stand that, we can turn it to our own advantage, 
and achieve almost all what thermodynamics 
allows, but we can never hope to do better than 
that. Further, because the model is simple, it has 
analytical solutions in some instances. These 
solutions can be used for a study of the migration 
and separation of high-concentration bands in 
non-linear chromatography. Because of the finite 
column efficiency, the features of these solutions 
will be somewhat blurred, but in most instances 
they will remain recognizable. 

An equation similar to eqn. 1 was derived first 
by Wicke [3] in 1939, and independently, a year 
later, by Wilson [4]. In their equations, these 
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authors omitted the term K/at. Wicke did not 
pursue the study of the ideal model, but that of 
the equilibrium-dispersive model [5]. Wilson 
studied the solution of his equation for a single 
component with a Langmuir isotherm [4]. He 
recognized that this equation can propagate 
concentration discontinuities, a conclusion which 
is also valid for eqn. 1 (if we replace q by C + Fq 

in the equation derived by Wicke or Wilson, it 
becomes identical with eqn. 1; thus, in spite of 
the error made, the conclusions in ref. 4 remain 
qualitatively correct). He did not realize, how- 
ever, that the solution includes also the forma- 
tion of a diffuse boundary on the rear of the 
band, even for a rectangular pulse injection. 
Wilson concluded that both boundaries remain 
vertical, and that the band width of an injection 
pulse remains constant, conclusions which are 
valid only for a linear isotherm. 

DeVault [6] considered the solution of eqn. 1 
using convex upwards and downwards isotherms. 
He derived the correct solution for the diffise 
boundary and showed that this diffuse boundary 
appears on the rear of the band in the case of a 
convex upwards isotherm and on the band front 
in the case of a convex downwards isotherm (in 
the rest of this paper, unless mentioned other- 
wise we assume that the equilibrium isotherms 
are convex upwards, like the Langmuir iso- 
therms; the rear boundary is diffise and the 
front is vertical, i.e., is a concentration shock). 
He also suggested that the reverse procedure 
could be used to derive the isotherm from the 
experimental diffuse boundary, by integration. 
The classical frontal analysis by characteristic 
points (FACP) and elution by characteristic 
points (ECP) methods of isotherm determination 
are derived from this theoretical result [7-lo]. 
DeVault [6] used the discontinuous solution of 
Wilson [4] to account for the front of the band, 
and explained the origin of the concentration 
shock in physical terms. The area of the profile is 
conservative and the shock takes place at a 
length (concentration profile) or time (elution 
profile) such that the integral of the concen- 
tration profile becomes equal to the injected 
area. Weiss [ll] arrived independently at the 
same description of the band profile for a single 
component. Later, the solution of the ideal 

model for a single component was extended by 
Glueckauf to the case of a sigmoidal isotherm 

WI. 
Finally, DeVault [6] recognized the effect of 

competition between the two components of a 
binary mixture. He made several qualitative 
observations of importance. For example, he 
showed that with a convex upwards isotherm the 
individual band fronts of the two components are 
self-sharpening, and he explained the origin of 
the displacement effect. He also suggested that 
the concentration of the first (i.e., less retained) 
component in the first band, where it is pure, is 
higher than in the original solution, while the 
concentration of the second, slower moving 
component in the rear band, where it is pure, 
tends to be smaller than in the mixed band. 
However, he could not give a solution to the 
two-component problem. 

Further important progress was made by 
Offord and Weiss [13], who assumed, without 
demonstration, that the velocities associated with 
the concentrations C, and C, found simulta- 
neously on a diffuse boundary are equal (this 
assumption is equivalent to the concept of coher- 
ence, a concept of critical importance for further 
progress, introduced by Helfferich [14]; it states 
that coherence is a state of stability that develops 
from arbitrary non-coherent conditions, so dis- 
tance-time regions of non-coherence are finite). 
All the successful work dealing with the solution 
of the two-component problem is based on this 
postulate, although only Klinkenberg [15] real- 
ized its importance before the work of Helfferich 
[14]. This relationship provides the key to the 
calculation of the diffuse boundaries in the 
mixed zone, when the bands of the two com- 
ponents are not yet separated. The second part 
of their work, however, was marred by an 
unfortunate error [ 16-181. 

Hence there is no doubt that Glueckauf [8,19] 
was the first to solve .the ideal model of chroma- 
tography for two components with competitive 
Langmuir isotherms and to obtain an analytical 
solution. He determined the two individual pro- 
files during their migration and their progressive 
separation. He showed the existence of two 
stable concentration discontinuities, one in front 
of each component band and of a concentration 
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plateau on the rear diffuse boundary of the 
second band. By writing an independent mass 
balance for these discontinuities, he could study 
their migration and decay. He also described the 
band profiles in frontal analysis and in displace- 
ment chromatography of a binary mixture [S]. 
This paper was considerably in advance on its 
time, and it remained largely ignored by chroma- 
tographers, for several reasons. 

First, the presentation of Glueckaufs solution 
is complex [8,19], in part because the mathe- 
matics available to him were incomplete, partly 
because of an unfortunate choice of the variables 
and symbols used, and partly because of the lack 
of a considerable amount of the details which are 
needed by those who have a more modest 
understanding of mathematics. More important- 
ly, the rapid development of instrumentation in 
the late 1940s and 1950s and the availability of 
sensitive on-line detectors caused analytical chro- 
matography to be more and more often carried 
out under linear conditions. In linear chromatog- 
raphy, peaks are symmetrical and do not inter- 
act. Chromatograms are easy to account for 
and a sophisticated theory is unnecessary. The 
renewed interest in preparative chromatog- 
raphy observed in the recent years has re- 
kindled concern for the ideal model of chroma- 
tography. 

Like the solutions of DeVault [6] and Weiss 
[ll] for the single-component problem, and 
although it is correct from the point of view of 
physical chemistry, Glueckauf’s handling of the 
concentration discontinuities [8] was based on 
physical intuition. It was not and could not have 
been founded on a rigorous mathematical deriva- 
tion. The relevant fundamental results of the 
theory of partial differential equations had not 
yet been derived and published. As shown by 
DeVault [6] and Weiss [ll], the definition of a 
solution of the equations of the ideal model is 
not easy. These equations can propagate dis- 
continuities [20,21]. This is due to the fact that a 
velocity is associated with each concentration. 
With a Langmuir isotherm, the velocity associ- 
ated with a concentration increases with increas- 
ing concentration. The rear profile is continuous 
and spreads because the higher a concentration, 
the faster it moves along the column. On the 

front, however, the high concentrations cannot 
pass the low concentrations, and all the concen- 
trations pile up into a discontinuity. A solution 
of a system of partial differential equations 
which cannot be continuously differentiated 
everywhere (e.g., which contains a discon- 
tinuity) is called a weak solution. The theory of 
characteristics [22] explains the appearance, 
growth, decay and collapse of these discon- 
tinuities or shocks. It also accounts for the 
continuous parts of the solution. 

The concept of weak solutions and the shock 
theory were developed around 1950 by Courant 
and Friedrichs [23] and by Lax [24]. The difEcul- 
ty is that, from the mathematical point of view, 
there is an infinite number of weak solutions to 
the equation of the ideal model. For example, as 
a discontinuity can be propagated at a certain 
velocity, a function only of its height [22], and a 
constant concentration is a trivial solution of 
eqn. 1, any rectangular plug is a weak solution. 
Only one of this infinity of weak solutions is 
acceptable from a physical point of view, how- 
ever. The proper solution of eqn. 1 is not 
uniquely determined until the entropy condition 
[23,25] is introduced to regulate the direction 

( i.e., sign) of the concentration jump across a 
discontinuity. Later, Oleinik [26] formulated the 
generalized entropy condition, valid for any 
isotherm. Rhee et al. [27] also proposed the use 
of a diffusional term whose coefficient tends 
towards zero. The application of the mathemati- 
cal entropy condition has been discussed by 
Rhee and co-workers [20,22,27] and recently 
reviewed by Rouchon et al. [28]. In the single- 
component case, all the conditions have been 
shown to be equivalent [26,29]. To be acceptable 
as a solution of a physical problem, a weak 
solution should contain diffuse parts which all 
satisfy the partial differential equation(s) of the 
problem, while its discontinuity satisfies the 
entropy or shock condition. 

The extension to multi-component systems of 
the results obtained for the single-component 
eqn. 1 seems reasonable from the physical view- 
point, but is not always without dangers when 
there are no solid mathematical proofs. In the 
multi-component case, very few results are avail- 
able, although Di Pema [30] has shown the 
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existence of a solution for some specific systems 
and for a finite boundary condition. 

A turning point in the study of the solutions of 
the ideal model of chromatography occurred in 
1970, with the publication of two major works, 
by Helfferich and Klein [31] and by Rhee et al. 

[20], which basically ended the fundamental 
study of this model. Whereas the former is more 
comprehensive and is dedicated more directly to 
ion-exchange chromatography, the latter is more 
mathematically rigorous and its rationale is bet- 
ter suited to the study of adsorption chromatog- 
raphy. However, the results of these two works 
are essentially equivalent [32,33]. 

Rhee et al. [20] incorporated all the acquisi- 
tions of the theory of partial differential equa- 
tions and supplied the first really rigorous solu- 
tion of the problem. Later, this work was ex- 
tended to the case of displacement chromatog- 
raphy [34], giving results equivalent to those of 
Helfferich and Klein [31]. In this work, they 
analyzed the separation of multi-component mix- 
tures using the theory of characteristics and 
studied the interactions between the concentra- 
tion shocks and centered simple waves. Given 
the mathematical intricacy of the problem [4,16- 
181, we must admire the intuition of DeVault [6] 
and Glueckauf [8] which let them find their way 
to the correct physical solution. As did Gluec- 
kauf [8], Rhee ef al. [20] included in their paper 
chromatograms that illustrate the major features 
of the solution. The presence of concentration 
shocks, the formation and decay of concentra- 
tion plateaux, the origins of the displacement 
and the tag-along effects are clearly illustrated. 
Unfortunately, this paper does not contain a 
detailed explanation of the derivation of the 
various equations describing the complete in- 
dividual profiles, and leaves the reader with the 
task of rediscovering these details. 

Meanwhile, Helfferich and Klein [31] had 
developed a theory of interference based on the 
ideal model of chromatography, the competitive 
Langmuir isotherm, the coherence concept [14] 
and the use of the h-transform. They used this 
theory to calculate the individual band profiles 
during the progressive formation of the isotachic 
train in displacement chromatography, and dur- 
ing the elution and separation of pulses in 

elution chromatography. The results of Helf- 
ferich and Klein have been widely used in the 
literature to account for experimental results in 
displacement chromatography. This method al- 
lowed the first calculated separation of a fifteen- 
component rare earth mixture by displacement, 
which was a remarkable achievement [35,36]. 
Although real columns have a finite efficiency 
and actual chromatograms always exhibit mixed 
zones and steep individual profiles (or “shock 
layers”) where the ideal model predicts sharp 
vertical boundaries (or shocks), the agreement 
reported [37] is often more than satisfactory. 

Confronted with the need to compare the 
results of the ideal and the equilibrium-disper- 
sive models of chromatography for high concen- 
tration band profiles, we found that the equa- 
tions giving the coordinates of the characteristic 
points of the profile and the equations of its 
continuous parts were not available anywhere. 
We derived them using first [38] the characteris- 
tic method of Rhee et al. [20], and later [39] the 
h-transform of Helfferich and Klein [31]. These 
equations are now available for the separation 
chemist to calculate solutions with any set of 
parameters. 

The practical importance of the ideal model of 
chromatography should not be underestimated. 
This model is relatively simple and it has an 
analytical solution. This solution is easy to calcu- 
late for any practical case, once the isotherm has 
been measured. It gives profiles that are in good 
agreement with the experimental band profiles at 
high column efficiencies or at high values of the 
loading factor (ratio of sample size to the amount 
needed for a complete monolayer) [40]. Thus, 
the solution of the ideal model, which is easy to 
derive from the equations we have reported, 
gives an excellent first approximation of the kind 
of individual band profiles to expect [38-411. 
This can serve as a basis for an approximate 
optimization of the experimental conditions [42]. 

Deviations of actual chromatograms from the 
prediction of the ideal model are due as much to 
the finite column efficiency [40] as to deviations 
of the competitive isotherm from the competitive 
Langmuir model [43]. This latter behavior is 
prone to happen as soon as the two components 
studied, albeit both following the Langmuir 
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model for single-component isotherms, have 
different column saturation capacities. There is 
no analytical solution for any competitive iso- 
therm more complex than the Langmuir model. 
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